The Safe Drinking Water Act and the Arsenic Rule

Rajiv Khera, P.E.
Arsenic in Drinking Water
Discussion Panel - ITRC Fall Meeting
October 27, 2004
Overview

- SDWA regulatory framework
- Arsenic final rule
- Analysis of system impacts
- Implementation
SDWA’s Approach to Public Health Protection

- Prevention
- Standards & Treatment
- Distribution System

Multiple opportunities for health protection from source to use
SDWA Standards and Treatment

- CCL
 - Unregulated Contaminant Monitoring Regulation
 - Occurrence Data
 - National Contaminant Occurrence Database
 - Human Exposure
 - Health Risks
 - Regulation?
 - Health Effects Studies
Roles and Responsibilities under SDWA

EPA sets health-based drinking water standards and provides implementation guidance for States and systems.

Primacy States implement standards and provide financial and technical assistance to systems.

Public water systems comply with water quality standards.

Consumers benefit from standards and pay “pass-through” compliance costs.
SDWA Regulates Public Water Systems

- Public Water Systems serve 15 connections or 25 people for at least 60 days/year
- Three types of PWS
 - Community Water Systems (CWS’s)
 - 15 connections or 25 people serving year-round residents
 - Non-Community Water Systems
 - Non Transient (NTNCWS) -- serves 25 of same persons for 6 months/yr
 - Transient (TNCWS) -- serves 25 persons/day for 60 days/yr
Public Water Systems

Number of systems
- CWS: 88,000
- NTNCWS: 54,000
- TNCWS: 20,000

Population served (mil.)
- CWS: 6.3
- NTNCWS: 23.2
- TNCWS: 273.3
1. Identify Maximum Contaminant Level Goal (MCLG): 0 ppb

2. Identify a Maximum Contaminant Level (MCL): 10 ppb

3. Identify Best Available Technology (BAT)

4. List affordable compliance technologies for small systems

5. Establish monitoring, analytical methods, reporting, and record keeping requirements
Arsenic Rule Benefit-Cost Analysis

<table>
<thead>
<tr>
<th>MCL Option</th>
<th>Economic Analysis ($million)</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantified Benefits</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$213.8 - $490.9</td>
<td>$792.1</td>
</tr>
<tr>
<td>5</td>
<td>$191.1 - $355.6</td>
<td>$471.7</td>
</tr>
<tr>
<td>10</td>
<td>$139.6 - $197.7</td>
<td>$205.6</td>
</tr>
<tr>
<td>20</td>
<td>$46.1 – $53.8</td>
<td>$76.5</td>
</tr>
</tbody>
</table>
Arsenic Rule Cost Analysis

- Costs include:
 - Capital cost of new treatment
 - O&M cost of new treatment
 - Monitoring costs
 - Administrative costs
- “Bottom-up” analysis for national costs
 - Estimate costs at facility level
 - Monte-Carlo simulation to incorporate uncertainty
Arsenic Rule Cost Analysis

Expected Number of Affected Systems
- national GW and SW arsenic distributions
- national GW and SW systems

Expected System Capital and O&M Treatment Cost
- system flow
- occurrence
- # entry points
- treatment options

National Cost Analysis
- total annual costs
- average household costs

\[\text{National Cost Analysis} = \text{Expected Number of Affected Systems} \times \text{Expected System Capital and O&M Treatment Cost} \]
Arsenic Rule BAT and SSCT

<table>
<thead>
<tr>
<th>Technology</th>
<th>BAT</th>
<th>SSCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod. lime softening</td>
<td>yes</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Mod. coagulation/filtration</td>
<td>yes</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Anion exchange</td>
<td>yes</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Coag.-assisted microfiltration</td>
<td>no</td>
<td>2,3</td>
</tr>
<tr>
<td>Oxidation-filtration (greensand)</td>
<td>yes</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Activated alumina</td>
<td>yes</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Reverse osmosis</td>
<td>yes</td>
<td>2,3</td>
</tr>
<tr>
<td>Electrodialysis reversal</td>
<td>yes</td>
<td>2,3</td>
</tr>
<tr>
<td>POU reverse osmosis</td>
<td>no</td>
<td>1,2,3</td>
</tr>
<tr>
<td>POU activated alumina</td>
<td>no</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>

1 = 25 to 500, 2 = 501 – 3,300, 3 = 3,301 – 10,000
Implementation Challenge

2,500 water systems serving 25 to 500 people + Many have minimal or no treatment + < 2 years to compliance date = Implementation Challenge
Small System Impacts

- EPA identified multiple SSCT
- No variance technologies
- General variance
- Exemption
 - Extends compliance schedule
 - Cannot pose unreasonable health risk
SDWA Exemptions

- **Any Size System**
- **Systems 25 - 3,300**

- 3 Year Exemption
- 2 Year Extensions
EPA’s Technical Assistance

- Treatment Technology Demonstration Projects ($12 million budget)
- Under development/review
 - GFH (granulated ferric hydroxide)
 - Media G2® (granular calcined diatomite)
 - SORB 33™ (granular ferric oxide)
 - AAFS-50 (activated alumina, iron modified)
- For information contact Thomas Sorg: sorg.thomas@epa.gov